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Nomenclature

A,

AF,

1,
7,

Gz, Gy

constant defined in Equation (3.6 b);

aiding flows;

constant defined in Equation {3.7a);

constant of inte.gration;

specific heat of convicted fluid;

dimensionless stream function deﬁned_ by Equation (3.16);
dimensionless velocity in streamwise direction;
a,cccleratilon due to gravity;

gravitatiénal acceleration in z and y directions;
auxiliary velocity function, {= 8f/0¢);

Grashofl number at L ,Gr = g|T\, — 1o |8 K L/v?;
local heat transfer coeflicient;

isothermal walls;

permeability of the porous medium,;

.thermal conductivity of the convicted fluid;

thermal conductivity of the saturated porous medium,;
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Abstract

The mixed conveclion boundafy Jayer from inclined impermeable flat surfaces bound-
ing saturated porous medium is studied. Two configurations are considered: One where
the porous medium is located above the flat surface and the other the porous medium
is located below the flat surface: The wall temperature and the free stream velocity are
functions of the slreamwise disiance from the leading edge. Both components of the

buoyancy forces are retained.

The momentum and thermal boundary layers are found to be non-similar. Non-

similarity solulions using the local non-similarity method are oblained. The analysis

admits the inclination to range [rom verticél to horizontal. The problem is found to
involve a lol of parameters: The mixed convection; the inclination; the Rayleigh number;
the Peclel number; the exponent of the wall temperature variation; the exponent of the
free stream velocity variation and the streamwise Jocation parameters.

' L

Analytical expressions for the dimensionless heat flux, the dimensionless heat transfer
coeflicient, the local Nusselt number, the local dimensionless thermal boundary layer
thickness, the average Nussclt number and the dimensionless tolal heat transfer rate are
obtained. Distributions of the dimensionless velocity and temperature with the vertical
to the wall coordinate are drawn. Distributions of the heat flux, the Nussell number and
the thermal boundary layer thickness with the dimensionless streamwise coordinate are

drawn. Numeric values of the average Nusselt number and the total heat transfer rate are

obtatned. Theee distributions snd numbers arc chiained for sclectcd parameter values
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for two cases: One considering isothermal walls and the other considering linear wall

temperature variations. Comparison with previous works shows excellent agreement.
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Chapter 1

INTRODUCTION

1.1 Introduction

The problem of convection in porous medium has in the last two decades attracted the
attention of many researchers for it’s important applications in many engineering-related

fields. The most important of these is the geothermal energy utilization.

Due to the increasing costs and rapid depletion of the resources of oil, man began
searching for other energy resources. It is believed that if all the available geothermal
resources being utilized, this can contribute significantly to the total world energy supply.
Volcanic movements may cause in the formation of geothermal reservoirs where magmatic
intrusion may occur., The intrusive magma may take the shape of inclined wall. If
the intruded magma is trapped in an aquiler where permeable formations with a fluid
(groundwater) both exist, the hot intrusive heats the meteoric water which is then driven
upward by buoyancy to shallow depths of the earth’s crust where the production wells

exist [1].
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2

Several body shapes immersed in porous medium have been considered by re-
searchers, These are spheres, cylinders and flat plates. The last two may be hotizontal,
inclined or vertical. In addition, axi-symmetric and two- dimensional body shapes have
also been considered. Many of the.previous works considered free convection from these
bodies and fewer considered mixed or forced convection. Also, most of the previous works
obtained similarity solutions for special cases of similar boundary layers. For the general
cases, solutions were obtained using the finite difference or the local non-similarily meth-

eds for non-similar boundary layers.

Most of the previous works which studied inclined wails had two main restrictions
on their works. Special cases have been studied where similarity solutions are possible,

and/or they neglected the buoyancy force component normal to the sutface.

By neglecting the normal buoyancy force component, the momentum equation
will be most applicable for vertical walls where the normal buoyancy vanishes and only
the streamwise buoyancy force will exist. The applicability will decrease as the inclina-
tion from the vertical increases and will break down for horizontal walls. For horizontal
walls only the normal buoyancy force component exists. So, the works which neglect the
normal buoyancy and obtained similarity solutions, regardless of their ungenerality, are
applicable only for vertical walls or walls with small inclinalions from the verlical. By
solving for non-similar boundary layers and retaining the normal buoyancy force compo-
nent, these restrictions are removed. We are no more solving for special cases and the

inclinations could range all the way from vertical to horizontal.

In this research the problem of mixed convection from the inclined impermeable

walls of a triangular fin (wedge configuration) in saturated porous medium will be an-
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slyzed. The mixed convection parameter (ie. Gr/Re) will allow the convection to be
forced for a (Gr/He) value of zero, mixed as the valuer increases, or {ree al (Gr/Re) limit
value of infinity. This analysis per_mits the inclinations of the inclined walls to range
from 0° to 90° which includes vertical and horizontal walls besides inclined walls. Both
the normal and the streamwise components of the buoyancy force will be retained which
‘allows this range of inclination. The analysis assumes power law variations from leading
edge of both wall temperature and free stream velocity. This is, to the author’s knowl-
edge, the first work that analyzes non-similar boundary layers of mixed convection from

inclined walls in porous medium where both buoyancy components are retained.

It is very important to note that the applicability of this research applies for any
configuration where inclined wall of any angle is embedded in salurated porous media.

This wall is not for necessity being a fin.
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1.2 Similar and Non-Similar Boundary-Layers

Many boundary layer problems do not admit siﬁﬁlarity. The similarity or non-
similarity concepts may occur in the momentum, the thermal boundary layers, or both.
However, non-similarity in one field will cause non-similarity in the other field if the
momentum and the energy equations are coupled. In the following we will discuss the

concept of similarity.

It is said that the velocity and thermal boundary layers are similar if we can find
two pairs of scale factors, one for each field, that upon applying them in the ordinate
y and the abscissa u or (T — T, ), the scaled velocity and temperature profiles, at any
streamwise posilion =z, are identical [2], where u is Athe_streamwise velocity component; T
is the temperature and T, is the temperature at infinity. Ilence, upon using the similarity
transformation, the dimensionless velocity and temperature will both be only functions

of the scaled (stretched) dimensionless coordinate.

Another way to describe similarity is to say that two velocity or temperature pro-
files located at different streamwise locations differ only by scale factors in u and y for

the velocity field, or (T — T,,) and y for the temperature field [3].

The requirement for similarity at two arbitrary streammwise positions z; and z,

can be shown in the following relation

ufxs,[y/g(z1)]) _ ul(z2,ly/g(=2)])

Uoo (T1) - Ugo(22)

(1.1)

for the velocity field, or
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[k 4

(T = T )z, ly/(z1))) _ (T = Tz, ly/5(z:)) -
(T ~ T )(z1) (T — T )(o)

for the temperature field, where g{z) is the scale factor for y.

In the present problem both momentum and energy equations are coupled and
non-similar boundary layers exist. The dimeusion]ess velocity (i.e. f'(n,§) - ufUy ), and
the dimensionless temperature (i.e. 6(n,¢) = (T' — 7o)/ (T — Too ) ) are both functions
of two independent vati&bles;(i.e n and ¢). Wherein, in the case of similarity, both the
dimensionless velocity and te‘mperature are functions of only one independent variabie
(i.e. n).-So, the existence of { in the momentum or energy equations makes the velo_clity‘
and the_thermal boundary layers both non-similar (dependent on tﬁe streamwise lolca-

tion) through coupling.

The method of local non-similarity solutions for velocity boundary layers for several
non-similar problems was described by Sparrow et al. [4]. They mentioned that non-
similarities in velocity boundary layers stem from one or more of the following three
factors: 1)} Free stream velocily, 2) Sutface mass flux and 3) Transverse curvature. An
early study that describes the method of local non-similarity solutions for thermal bound-
ary layers for several non-similat problems was published by Sparrow and Yu [5] . The
reasons for non-similarity in thermal boundary layers may be caused by streamwise varia-
tion in surface temperature, surface heat flux, and/or volume heat generation. The works
by Minkowycz and Sparrow [6] and Ch‘en and Mucoglu (7] are two early examples of the

numerous applicalions of the methnd.
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1.3 Darcy’s Law

It was found by Darcy in the year 1856 that the volume flow rate of water V,in a
column of sand of length AL is proportional to the piezometric head Ah and the column
cross seclional area A, and inversely proportional to the length of the columnn {1,8,9], that

is
Ah

A - 1.3
7% AAL (1.3)
In differential form
Vv dh d

where K, is the hydraulic conductivity, u is Darcy’s velocity, Z is the distance measured
vertically upward from an arbitrarily chosen datum level, p is the hydrostatic pressure, p
is the density of the fluid, and g is the acceleration due to gravity. Further, it was found

experimeitally [1] that

where g is the dynamic viscosity of the fluid. So, Equation (1.4) can be put in a final form

T = —(K/p)(Vp — p7) (1.6)

where K is the permeability of the saturated porous media, @ is the velocity vector and
g is the gravitational acceleration vector. Darcy’s law is applicable for low permeability

and porosity of the porous medium for which Reynold number, Re = pu/K/u, is less

than unity [1).
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Later, some researchers [10-15) used several modified equations based on Darcy’s law

in which the effects of inertia and boundary on convective flows in porous medium are

included.

In the present work, Darcy’s law will be applied.
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Chapter 2

LITERATURE SURVEY

2.1 Introduction

Due to it’s significant importance in geothermzl cnergy and other engineering-related
appﬁca.tions, the problem of convection in porous media has attracted a large volume of
research. These problems range from free through mixed to forced convection. Different
configurations bounding porous media have been subjected to study. These configura-
tions range ftom vertical through inclined to horizontal flat plates. Also, cylindrical and
spherical configurations have been examined. These surfaces may be permeable wher.e

injection or withdrawal of a fluid exists.

2.2 Numerical Solutions

Extensive numerical investigations of the convective heat transfer problems in porous
medium have been conducted by a number of researchers during the last two decades.
Two main approximate numerical methods have been used. These are finite-difference

and local non-similarity. For the simplified similarity boundary layer analysis, direct in-

399031

tegrations using Runge-Kutta methods are used.
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2.2.1 Tree convection

Free convection in porous media has important applications in geothermal reservoirts.
The bounding surfaces may be verlical, nclined, or horizonlal flai plaies. Also, curva-
ture effects may be involved for cylindrical and spherical surfaces. These surfaces may be

permeable or impermeable. The works considering vertical surfaces will first be reviewed .

Vertical surfaces

Cheng [16] considered permeable surfaces where the wall temperature and the injec-
tion or withdrawal \-relocities vary as power law functions of streamwise variable. Here,
similarity solutions were obtained. The solutions were performed for a special case in
which the prescribed wall temperature and the surface mass flux velocily vary as «*

and z*~1/2 respectively . Velocity profiles, temperature profiles, heat transfer rate, and

boundary layer thickness against the mass flux parameter are found for A = 0, 1/3, and L

Minkowycz and Cheng [17] considered the same problem in [16] but local non-similarity
solutions for the non-similar boundary layer were obtained. The eflects of the surface
mass flux on temperalure profiles, heat transfer rate, and thermal boundary layer thick-
ness were studied. Comparison with previous works using the finile-difference method

showed excellent agreement.

Conjugate free convection from vertical plate fins in porous media was studied by Pop
et al. [18]. Similarity solutions were obtained for plate heat sources and circular heat
sources. Stream function, temperature profiles, and temperature gradients were studied

for both cases. Analytical expressions were also obtained for local Nusselt number, local
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surface heat flux, and thermal boundary layer thickness.

Similar problem to [16] but considering conjugate. problem was studied by Liu and
Minkowycz [19]. The governing parameter for this problem were found to be the convection-
conduction parameter (which represents the ratio of convective effects to fin conductance)
and the lateral mass ﬂux parameter. Non-similar solutions were obtained using the local
non-similarity metho;l. Effects of mass flux on fin temperature distributions, boundary-
layer thickness, local heat transfer coefficient, local heat flux, and total heat transfer
rate were studied. It was found that injection of a fluid at the fin surface increa,se.s the
boyndary layer thickness, while increases fin temperature variation, local heat transfer

coeflicient, local heat flux, and total heat transfer rate. Withdrawal had reverse effects.

Inclined surfaces

Free convection over inclined isothermal walls were considered by Jang and Chang
[20]. An implicit finite difference method was used to solve the governing equations.
Botl} normal and streamwise components of buoyancy force were retained. Heat and
mass buoyancies were assumed to exist. The range of applicability of inclination réng.es
from 0° to 90°. It was found that as inclination from horizontal increases, both heat and
mass transfer rates increase. Comparison with previous works where similarity solutions
were obtained, for normal buoyancy component neglected equations, showed these simi-

larity solutions may under predict the heat and inass transfer rates for small inclination

parameter values.
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12
Horizontal surfaces

Ilorizontal slilrfa.ces in porous media where considered by Cheng and Chang [21].
Power law variation of wall temperature of the streamwise variable from leading edge
was assumed. Similarity solutions were obtained for convective fluid over heated surfaces
or under cooled surfaces. Analytical expressions were obtained for boundary layer thick-

ness, local and overall surface heat flux.

Surfaces with curvature

Merkin [22] analyzed free convection from axi-symmetric and two- dimensional bodies
of arbitrary shape. Constant wall temperature was considered and it was shown that the
governing equations allow similarity solution for any body shape. The obtained ordinary

differential equations has been solved previously.

Vertical cylinders in porous media with injection or withdrawal of a fluid was consid-
ered by Yucel [23]. Constant wall temperature and constant wall heat flux were assumed.
Finite diflerence solutions were obtained for temperature profiles and heat transfer rates
for various values of a parameter relating the injection or withdrawal of fluid to combined

transverse curvature and surface mass flux.

Conjugate analysis for vertical cylindrical fin which is permeable was performed by
Liu et al. [24]. Non-similar solutions were obtained by the local non-similarity method.
Effects of the surface mass flux, the convection-conduction parameter and surface curva-
ture on temperature distributions and heat transfer characteristics were studied. It was

found that higher values of convection-conduction parameter result in nonmonotonical
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local heat transfer distributions. Withdrawal of fluid increases the fin temperature vari-

ation, the local heat transfer coefficient , the average heat transfer coeflicient, the local

heat flux, and the total heat transfer rate. Injection had reverse effects.

Effects of sul;face mass flux and surface transverse curvature on natural qonvective
boundary layers were studied by Minkowycz and Sparrow [25]- Isothermal vertical cylin-
der with uniformly distributed surface mass flux were considered. The local non-similarity
method was employed. The effects of the parameters characterizing the surface trans-
verse curvature and surface mass transfer for Prandt! number ranging from 0.01 to 10 on
local Nusselt numbers were studied. It was found that the local Nusselt numbers for a
vertical cylinder are less sensitive to surface mass transfer in comparison with those for

vertical plates. Higher Prandil number results in higher sensitivity.

Free convection from vertical cylinders in porous media was also considered by Minkowycz

and Cheng [26]. Surface temperature varies as power iaw variation. Analytical expres-
sions for local surface heat flux and overall surface heat flux were obtained. Local simi-
larity and local non-similarity solutions were obtained. Temperature and velocity profiles
for several values of dimensionless streamwise variable were obtained for A =0, 1/2 and
1. It was found that the local similarity solutions are sufficiently accurate compared to

the local non-similarity solutions.

Nakayama et al. [27] analyzed free convection from nonisothermal curved surfaces.
They applied non-Darcy law (Forchheimer) equation and neglected the normal buoyancy
component. They converted the governing partial differential equations for a special case
into ordinary differential equations and obtained similarity solutions. They found that

similarity is oblained for Darcy flows when m and n, where m is an exponent associ-

All Rights Reserved - Librarv of University of Jordan - Center of Thesis Deposit



14

ated with the body shape and n is an exponent associated with wall temmperature, are
constants. For non-Darcy flows similarity is obtained when m = n. Velocity and temn-
perature profiles were obtlained for Darcy and non-Darcy flows. An analylical expression
for the local Nusselt number were derived. The resistance due to inertia tends to reduce

the Leat transfer rate.

2.2.2 Mixed convection

Mixed convection is obtained when the buoyancy affects the forced convection. Flows
may occur in geothermal reservoirs due to the difference in hydrostatic heads resulting
from recharge or discharge of meteoric water. Aiding or opposing flows may exist. Ver-

tical wall configurations in porous media will first be reviewed.

Vertical surfaces

Darcy’s law was applied to analyze conjugate vertical fins by Liu et al. [28].l Here,
local non-similarity solutions were obtained. The parameters describing the problem was
found to be Prandtl number, -mixed convection (which represents a ratio of buoyancy to
inertia forces) and convection-conduction parameters. The main result was that at high
convection-conduction parameter, local heat transfer coeflicient and local surface heat

flux decreases and then increases as we move downstream.

More recently, Gill and Minkowycz [29] analyzed conjugate vertical fins. Ilere, a local
non-similarity solution was obtained. The boundary and inertia forces were studied. It
was found that neglecting boundary and inertia forces eflects on heat transfer coeflicient
becomes more significant for higher mixed convection and convection-conduction param-

elers. These forces effects are less pronounced for forced convection specially downstream.
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Ranganathan and Viskanta [30] applied a finite-dillerence scheme to solve for per-
meable surlace bounding variable porosity media. They considered buoyancy-aided flow
and fook into account viscous and inertia forces. They found that these forces have sig-
nificant effects on heat transfer rate and velocity profiles. Ii was aiso found that blowing
at the surface affects vel‘(;city and temperature distributions while variable porosity has

negligible effects.

Darcy’s Jaw was applied by Lai et al. [31] to analyze aiding and opposing flows in
a verlical channel. The channel is bounded by an isothermal heated segment of finite
len‘gth which is a part of & wall and an isothermally cooled wall. The free stream ve-
locity is uniform. The governing equations were solved using a finite difference methed.

Rayleigh and Peclet numbers effects on the average and the overall heat transfer rates

were studied. It was found that the local and overall heat transfer rates are complex

functions of Rayleigh and Peclet numbers. In the free convection regime the heat trans-
fer characteristics depend largely on the Rayleigh number.Increasing the Peclet number
increases the heat transfer rate and moves the flow from free to forced convection and
the average Nusselt nﬁmber curve with Pe reaches a value of 0.5 in the forced convection

regime .

Inclined surfaces

The works which considered mixed convection over inclined walls in porous media
will be reviewed now. Only few investigations are published. Cheng [32] established the
criteria for such a problem. Cheng obtained similarity solutions considering inclined wall
(wedge) configuration. Ile assumed power law variations from leading edge of free stream

velocity (i.€ o = Bz") and wall temperature {ie. T = T & Az}), where ug and T
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are the free stream velocity and temperature, respeclively; Ty is the wall temperature;
is the streamwise coordinate; A and B are posilive constants. The problem was solved
for a special case where both free stream velocity exponent, ".n., and wall temperature
exponent, A, are equal (i.e. A = n). lle neglected the normal to the wall buoyancy com-
ponent. His work is best applicable for vertical wall. The accuracy of his work decreases
with increasing the inclination from vertical and breaks completely when only normal
buoyancy to the wall exists. The parameter governing mixed convection from inclined
wall in porous media was found by Cheng to be Gr/Re,where Gr is the modified Grashof
number and Re is the Reynold number. Numerical results were obtained for isothermal
(i.e. A = n = 0) vertical walls and for inclined walls with an angle equals /4 with free
stream velocity and wall temperature power of 1/3 (i.e. A = n = 1/3). Nusselt number,
velocity and temperature profiles were obtained for several Gr/Re values for both aiding

and opposing flows.

A .similar problem to [32] was analyzed by Chandarsekhara et al. {33]. Permeability
and thermal conductivity were both assumed to be functions of the gl to this swall
direction. Also, a second order term accounting for boundary eflects ( viscous resistance)
was included in the momentum eqnation. Similarity solutions were obtained for two
special cases; uniform (i.e. A = n = 0) and linear (i.e. A = n = 1) variation of wall
lemperature. The effects of mixed convection and local porosily parameters on velocity
profiles, temperature profiles, friction factor and heat transfer were studied. Velocity
profiles obtained here differ from those obtained by Cheng [32] where slip was allowed. It

was found that variable permeability and conductivity increases the heat transfer rate.
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i

Horizontal surfaces

The criteria of mixed convection over horizontal plates in porous media was estab-
lished by Cheng [34]. Temperature and free siream velocity vary as power law from
leading edge. The mixed convection parameter was found to be Ra/(Pe)?/?, where Ra is
the Rayleigh number and Pe is the Peclet number. Similarity was found to exist when
A = 24 Similarity solutions, as special cases, were obtained for horizontal plate with
n=0 and A = 1/2 and stagnation point flows about horizontal flat plate with n =1 and
A = 2. These values of A and n were taken so that the governing equations are inde-
pendent of the streamwise variable. The mixed convection parameter effect on velocity

profiles, temperature profiles and Nusselt number were studied.

Minkowycz et al. [35] analyzed the same problem as [34] but non-similarily solutions
were obtained. Velocity and temperature profiles for different values of the mixed con-
vection parameler were obtained. Also, the variation of local Nusselt number against the

mixed convection parameter was obtained.

The influence of surface mass flux (injection or withdrawal) on mixed convection over
horizontal plates in porous media was analyzed among others by Lai and Kulacki [36].
Similarity solutions were obiaincd for mixed and free convections. It was found that heat

transfer is enhanced by withdrawal of fluid from the surface and decreases by injection

of fluid.

All Rights Reserved - Library of University of Jbrdan - Center of Thesis Deposit



18

Surfaces with curvature

A different problem where conjugate mixed convection occurs over a cylindrical fin
in porous media was analyzed by liu et al. [37]. Local non-similarity solutivns were ob-
tained. The convection-conduction, the mixed convection and the curvature parameters
effects on fin temperature distributions, local heat transfer coeflicients, local lteat Muxes,

total heat transfer rate and fin efficiency were reported.

2.3 Other Solutions

Integral method was used by Cheng [38] to study mixed convection over vertical and
horizontal walls for such cases where similarity solutions were oblained before. Darcy
law was employed and a second degree polynomial for the velocity and temperature pro-
files were assumed. Cheng foﬁnd good agreement between the integral and the similarily

solutions.

The integral method was also employed by Kaviany [39] to study the effects of the
presence of a solid matrix on forced convection heat transfer rate from a flat plate. With
the free stream velocity being constant, first and second order flow resistance terms due
to the presence of the solid matrix are included in the momentum equation. These two
terms are significant for small permeability. For high permeability, a shear stress term
accounting for the presence of the boundary is also included. The flow moves through
three regimes as the Reynold number and/or the permeability decrease. Regime one in
which the presence of the solid matrix is not significant on the heat transfer rate. The
second regime is the non-Darcian regime in which the thermal and momentum boundary

l;yer thicknesses are of same order of magnitude. The third regime is the Darcian regime
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in which the ratio of the thermal to momentum boundary layer thicknesses is larger than

unity.

2.4 Experimental Works

Fand et al. [40] investigated natural convection from a horizontal cylinder in porous
medium, The porous medium consists of glass spheres. Fluid was either water or silicone
oil. Two subregions depending on Rayleigh number were noticed. The low Rayleigh
number region corresponds to Darcy flow. The high Rayleigh number region corresponds
to Forchheimer flow. In each{ region the Nusselt number behaﬁs differently. Correlations

for the Nusselt number for each region were presented.

Inclined porous layer in which natural convection occurs was studied experimen-
tally by Inaba et al. [41]. The layer was bounded by four walls (cavity) and filled with
fluid and spherical particles. Two walls were isothermal but at different temperatures.
The other two walls were. insulated, Maximum Nusselt number was observed to occur
at two different inclinations depending on the Rayleigh number range. Four kinds of
non-dimensional empirical correlations for the Nusselt number were derived for different

ranges of inclination and Rayleigh number.

Another experimental work performed by Seki et al. [42] studied rectangular
cavities packed with porous medium. 'The opposite verlical walls are maintained at
uniform but different temperatures. Top and bottom walls are insulated. Three kinds of
fluids were used: water, oil and ethyl alcohol. Wide range of Rayleigh number, Prandtl
number and aspect ratio were studied and it was found that they have significant eflect

on heat transfer rate. A relationship was obtained for the Nusselt number which was
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Chapter 3

ANALYSIS

Consider a triangular (wedge) fin placed vertically or horizontally in a saturated porous
medium. The fin is of length L and subjecled to combined free and forced convection.
The fin is of two possible configurations (a) and (b} as shown in Figure (3-1) Configuration
(a) is horizontally projecting (the porous medium is heated or cooled from below) while

(b) is vertically projecting (the porous medium is heated or cooled from above). The z-

axis denotes the streamwise coordinate and the y-axis denotes the transverse coordinate.

The walls of the fins are inclined by ¢ degrees from the vertical.

(a) (b)

Figure (3-1) Physical model of two configurations (a) and (b).

21
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The following assumptions for the mathematical formulation are assumed :
1. The flow is incompressible, steady, laminar and two-dimensional.

2. Both the convected fluid and the porous medium are everywhere in thermal equi-

librium.

3. Fluid and porous medium properties are constant, except the density of the fluid

in the buoyancy force terms.
4, The convected fluid temperature is everywhere below it’s boiling temperature.
5. The Boussinesq approximation is invoked.

Under these assumplions the governing equations describing the problem are given

by, [32]
Ou  Ov
e e i ; 3.1
Oz + Jy 0 (1)
K {0r
u = = (a—i-l-pgcos qb) (3.2)
¥ = K (% + pg sin (3.3)
p \Oy
.‘9_22_{_32’11_1 6_’1:_‘, QT: (34)
Oyt  Ox «a "Bz Uay '
p = poll ~ A(T - To)] (3.5)

where the '+’ sign in Equation (3.3) refers to configuration (a) while the -’

sign refers
to configuration (b) in Figure (3.1) u and v are Darcy’s velocities in # and y directions,
respectively; K is the permeability of the porous medium; p, g2, and 3 are the density,
viscosity, the thermal expansion coeflicient of the convected fluid; a = km/(peC)y is the
equivalent thermal diffusivity with (pC); denoting the product of density and specific

heat of the convected fluid, and k, the thermal conductivily of the saturated porous

medium which is given by k, = (1 — €}k, + ¢k; where € is the porosity of the medium,
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k, and k; are the thermal conductivity of the solid and the convicted Mluid, respeclively;
T is the lemperature; p is the pressure and g is the gravilalional acceleration. The
subscript "oo” refers to the condition at infinity. Equations (3.1)-(3.5) are subjected to

tlie following boundaiy condilions

at y=0, p= Ty = Too £+ Az? (3.Ga,b)
as Y — 00, U =1, = BHz", T=T, (3.7a, b}

where A and B are positive constants; T, is the temperature of the fluid and the porous
medium far from the walls. Aiding flows are attained il the buoyancy force has a com-
ponent in the free stream direction. Opposing flows are attained if the huoyancy force
has a component that opposes the direction of the free-stream. Thus, aiding flows are
obtained for both configurations (2) and (b) if the wall is hotter than the free stream
temperature, i.e. T, = To, + Az*, and opposing {lows ate obtained if the wall is colder
than the free stream temperature, ie. T, = T, — Az>.

Now, define tlie stream function as

o Oy
et = . 3.8a,b
ay ul ax ( a’? )
where 1 is the streamn function. Then
Vi = 3¢ 5 %Y e B

dy?r  Oz? = gy Oz _ (3.9)

Differentiate Equation (3.2) with respect to y and Equation (3.3) with respect to = and

substitute the resulling two equations into Equation (3.9) to get rid of the pressure terms

and get

O Py Kpogf or 0T
P taz = + P [cos ¢3y F sin d)@::] (3.10)

The % sign on the RUS of Equation (3.10) specifies whether the flow is aiding, the "+’
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sign, or the llow is opposing, the -’ sign. The F sign is related to the two configuratious
considered. The ' sign specifies configuration (a), while, the "4’ sign specifies configu-
ration (b).

Substitute Equations (3.82,b) into Equation (3.4) to get

Or 8T _110v0T 8¢ 0T (3.11)
Oy 8z a |0y Oz Oz Oy '

If convection takes place in a thin layer adjacent to the wall such that the gradients
in the normal direction to the wall (i.c. y-direction) are much larger than those in the
streamwise direction (i.e. z-direction), it follows that 9/8y > 0/dz . Then the first
lerms on the LHS of Equations {3.10) and {3.11) are larger than the second terms in
them and so the second terms will be neglected and the final form of the governing

equations become

2,1, n Tl Calpn
ik & :I:{ip""—g"'i cos ¢21_ F sin ¢g,;£ - (3.12)
dy? p Oy Jz
FPT 1ipor oypor
— === 3.13
dy? « [ay dr Oz Oy (9. 1)

we seek to convert Equations (3.12) and (3.13) from p.artia,l differential equations into

locally ordinary differential equations by introducing the following dimensionless variables

‘ n(z,y) = (H’Zx\)m% (3.14)
(o) = 7 (3.15)

¥ = (aue ) f(n, €) (3.16)

0(n,€) = H ) (3.17)

By introducing these variables and upon transformation (full details of the trans-

formation procedure is given in Appendix A) obtain the Darcian velocilies

4= U f' (3.18)
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where ' = 3/0y . Also, Equations (3.12) and (3.13) become

2
[9’ cos @ F (—I—l;)l & ("% )Sllltp(Ag + f-——g— + -——11]9 )] (3.20)

In Equation {3.20) the 4 sign specifies aiding , the 4 sign, and opposing, the — sign.

Also, the F sign specifies configuration {a), the — sign, and configuration (b}, the + sign.

L+ny { ,08 ,6[)
Al — F 0 =¢ -0 3.21
I ( 2 /7 T\’ at ¢ (3:21)
with boundary conditions
ot 7=0 60, =1 (3.22)
as 7 — oo, 8(00,{)=0, f'(oo,{) =1 (3.23a,b)
also, at 7 = 0 =% v = 0 and so Equation (3.19) gives
-2 ,0f
1(0,¢) = - (3.24)
14+n°8¢ ©0.6)

where Gr = AT==T=lAKE g yhe modified Grashof number at L, Re = *=£ is the Reynold

number at L and G = #22% 3= j5 the mixed convection parameter at L. This parameter

(u.,c)LL _ BI~t1

o - a

is = measure of the relative importance of free to forced convection. Pe =
is tire Peclet number at L; ¢ is the inclination from vertical; X is the exponent in Equation
(3.6b); n is the exponent in Equaltion (3.7a); f is the dimensionless stream function and

@ is the dimensionless temperature.
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The presence of ¢ and it’s derivatives shows that the problem is non-similar and
similarily was not attained. However, similarity may be achieved as a special case when
A =n = —1. Similarity does exist, as a special case, in the case of vertical wall when the
normal buoyancy force (the second term on the RHS of Equation(3.20}) dees not exist.
This is also the case for inclined walls when the normal buoyancy is negiected. This was
the case considered by Cheng [32], whereby A = n. Il Gr/Re = 0, which is the case of

forced convection, similarity is also obtained.

Inspection of the governing Equations {3.20) and (3.21) reveales that the non-
siinilarity is caused by the power law variation of the wall temperature, the free stream
velocity and the normal buoyancy component. The non-similarity is more explicit in the
velocity field. The value of the Peclet number specifies the effect of both the siream-
wise and the normal to the wall buoyancy force components on the convected fluid. The
ligher the Peclet number, the less the buoyancy effects, the closer the flow to the forced

conveclion.

The boundary layer approximation used here is valid if (i) /3y > 8/0z aund (ii)

u > v. From Equation (3.14) the ratio y/= is of the order of (Pe)~*/2. From Equalions

(3.18) and (3.19) the ratio v/u is of the order of (Pe)~*/? also. So, conditions (i) and (ii})
A

above are valid for large (Pc) walucs. Al £ — 0 aad duse to tic Lip of the fin (the leading

edge) the boundary layer approximation is not expected to be valid.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Chapter 4

LOCAL NON- SIMILARITY
SOLUTION

4.1 Introduction

The local non-similarity method to oblain solutions of Equations (3.20)-(3.214) will
now be introduced. The method is well documented in the literature and a full descrip-
tion of the numerical scheme is given by Minkowycz and Sparrow {44]. The method is
approximate and based on the weak dependence of f and # on . So, derivalives with
respect to ¢ are seleclively deleted for three levels of truncation discussed below. The
method provides no restrictions on n and A values. For the three levels, ¢ is regarded as
a constant prescribed paramecter. Then, upon solving fur & specific sireamwise location,
¢ became n constant number and the governing equations became ordinary differential
equations. This means that the solulion al a specific streamwise location is indepen-
dent of the the solution anywhere else. The local non-similarity method retains all the
non-similar terms in the governing equations and only in the subsidiaty equations these
terms are selectively deleted. The major disadvantage of this method is that the validity
of neglection of the non-similar terms is uncertain. However, this neglection is based on
the assumption that either ¢ values are small or the dependence of f and 8 on ¢ is weak,
hence, the derivalive of f and @ with respect to £ are small. By proceeding from first to

second o third level of truncation, the non-similar termns that are deleted become more

27
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and more remote. So, higher accuracy is expected for higher levels. This was confirmed

by researchers who observed that results become closer by moving to higher levels |6,7,28)

. By comparing the local non-similarity results with finite difference method results, good

agreement was observed [24,35]. The results of the first level (local similarily) are con-

sidered to be accurate for most practical cases [5,6,26}.

Now, let

G=2af/8¢

and

& = 06/0¢

then Equations (3.20) and (3.21) become

f' = o
[9' s (o) € CHsing
(AG 1 e+ "—'2—'—5179’)]

i+n
2

6" — Mf + ( ) 0 =¢(f¢~6G)

and the boundary conditions are
at =0, 8(015) =1, f(U:E) = '1:+2',.I£G
as 700, 8(00,8) =0, f(c0,€)=1

where €0 in Equation (4.3) is Gr/Re.

(4.1)

(1.2)

(4.5a,b)

(4.6a,b)
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4.2 First Level of Truncation (T.ocal-Similarity)

At Lhis level the variables G and & in Equations (4.3), (4.4) and (4.5b) are deleted.

Then, the governing equations for this level are

f" — ine)\un
/ ntl
[9 cos P F (Pe)l ZE (% )sm¢

(/\9+n 11}9’)]
7 ' 1+n P
3—A0f+( : )fe_o

. i
Another way to put these two equations is

"+ Py f =Quy

0" + Pig8' = Qi

where_
Py=0

_ Qiy = Q"

1/2 . _
[rens (50) " #Dsng (04251

% |
Pu=——f
Qe = M’

and the boundary conditions are
at =0, 60,6)=1 F(0,¢)=0

as . n — oo, 9(00,6) =0, f‘(wig) =1

(4.7)

(4.8)

(4.9)

(1.10)

(4.11).

(4.12)

(1.13)

(4.14)

(1.15a,b)

(4.16a,b)
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3" 4 Py = Qhs (4.22)
where
Py = 0.0 | (4.23)
1\Y?
Qqp = £ [9' cos ¢ F (E)
e ein ¢ (Aa +¢5 + "’T"lqe')] (4.24)
Pag = It + £G (4.25)
Qa0 = Qo -+ EB f' {4.26) |
and
Pye = 0.0 " (1.27)

Qi = DQUX —n)é* "1 cos ¢ + DT
4’ cos ¢ — DQ(1/Pe)/* Esin ¢

[Acct=10 + €A% + (cc + 1)¢ T

+ ("’ - 1) cct ' 4 (22 1) _E”"an"] - (4.28)
Z \ 2
Py = Py (4.29)
Qs = MG + (A +1)f'd — (”—;ﬁ) G + 3G (4.30)

where cc = (24 — 3n — 1)/2; E = 1 for configuration (2} and -1 for configuration {b) and

D =1 for aiding flows and -1 for opposing flows.

The value of f at n = 0 is obtained by diflerentiating Equation (4.5 b) with respect

to £ and deleting the If term obtained. Then, we get G(0,£) = 0 and substitute back in
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Equation (4.5 b) and get f(0,{) = 0.

Equations (4.19)-(4.30) are subjected to boundary conditions

6(0,€) =1, f(0,6) =0 (4.31)

#(0,¢) =0, G(0,£)=0 (1.32)
and

B(c0,6) =0, flco,€) =1 (1.33)

H(o0,¢) =0, G'(c0,¢) =0 (4.31)

The set of equations of this level are coupled and simultaneous solution is required.
These equations are ordinary diflerential equations if ¢ is regarded as & parameter. In
this level note that the two basic equations (i.e. Equations {4.3) and (4.4) or {4.19) and
(4.20) ) are retained without approximation. The neglected terms (i.e. ff and x ) are in
the two subsidiary equations (i.e. Equations (4.21) and (4.22) ). Thus , higher accuracy

than the first level is expected.

4.4 Third Level of Truncation

A set of six equations is required for this level. The first two equations are the first
two equations of the first level (i.e. Equations {4.3) and (4.4) ), which are the basic
equations wilhout approximation. Two more equations are the two equations obtained
in the second level by deriving the basi¢c governing equations (i.e. Equations (4.3) and
(1.4) ) with respect to £ but no approximation is required and the variables If and x are
retained. The last two equations are obtained by deriving the second two equations of
this level with respect to £ In the obtained two equations the H/0¢ and Ox/0¢ terms
are (ieleterl and the H and y variables are retained. The set of equations governing the

third! level of truncation are

P AP =0y (4.35)
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the value of (Gr/Re), and so the buoyancy force decreases as { increases. On the other
hand, for A = 1, (Gr/Re). value increases with €. Also, note that the free stream velocily

is increasing with downstream direction.

Figure (5-9) shows that increasing A decreases the velocity. Opposite behavior
is observed for OF, Iligher A values mean lower (T, — T ) values and as a result lower

. buoyancy forces.

5.2 Temperature Profiles

Figures (5-10)-(5-18) present the lemperature fields. Figures (5-10) and (5-11) show
“ that higher Gr/Re values results in higher temperature- gradients {higher heat transfer
values). This is caused by the buoyancy effects. For OF higher Gr/IRe values lessen the

lemperatlure-gradients since the free stream dominates the buoyancy.

Figures (5-12) and (5-13) show thal higher inclinations from vertical decrease the
temperature-gradients. As ¢ increases the normal buoyancy component develops. For
OF the higher the normal buoyancy component (higher ¢) the higher the temperature-
gradients. The [ree siream is facing less resistance from the tangential buoyancy force

compuoiient. The effect of ¢ is more pronounced in the case of A = 0 than in the case of

A = 1. In the case ol A — 0, higher buoyancy forces are involved. The effect of ¢ is also

more pronounced for configuration (a) where the normal buoyancy force has higher eflect.

Figures (5-14) and {5-15) show that increasing the Pe number decreases the dimen-
sionless temperature-gradients. It was found that increasing the Peclel number decreases

the dimensionless velocity and lower dimensionless temperature is expecied. Also, in-
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creasing Pe means lower thermal diflusivity and lower heat transfer rate.

Figures (5-16) and (5-17) show that for IW, moving downstream decreases the
temperature-gradients, while opposite behavior is observed for LW. This is caused by the

decreasing f in the case of IW and the enhancing f' in the case of LW.

Figure (5-18) shows that increasing A decreases the temperature-gradients caused

by the decreased temperature difference, T,, ~ T .

5.3 Heat Transfer Characteristics

In this section analytical expressions for local surface heat flux, local Nusselt nunber,
local thermal boundary layer thickness, lotal heat transfer rate and average Nussell

number &ill be obtained.
5.3.1 Local surface heat flux
Firstly, obtain an expression for local surface heat flux along the fin using

orT
g=—kn (ég)y._-o (5.1)

and using Equation (A.22) for the expression for 9T /0y this becomes

1/2
g= —~k,,,A(§) 224100, ¢) (5.2)
arranging
L o
T = =6 T (P -0(0,) (5.3)

where ¢ is the dimensionless local surface heat flux. Equation (5. 2) indicales thal to
altain constant heat flux the boundary layer should be similar and the exponent w—;‘—l =

0. Thus, constant heat flux is only obtained for vertical surface with A = n = 1/3.
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Representative distributions for A = 0 and 1 and n = 1/3 [or seleclive values of
Gr/Re, Ra, ¢ and Pe are presenied in Figures (5-19)-(5-26). Figures (5-19)-(5-23) rep-
resent the case of A = 0 and n = 1/3. In Figure (5-19) increasing Gr/Ile increases the
value of ¢* as expected. Figure (5-20) shows that increasing the ¢ decreases ¢°. The
effect of Nayleigh number, Ra, is similar to the eflect of the mixed convection parame-
ter, Gr/Re = Ra/De, as shown in Figure (5-21). With the dimensionless heat flux is
proportional to the Peclet number as shown in Equation (5.3), Figure (5-22) shows that
increasing Peclet munber increases the heat flux which is caused by the enhanced free

stream velocity.

For A = 1 in Figures (5-23)-(5-26) , similar argument to that for A = 0 may be
said. llowever, we can notice the fllowing, The dictribulions for both configurations
are almost identical indicating that the normal buoyancy force component is very small
compared to Lhe streamwise component for the selected parameters range . For A = 0
~ maximum heat flux occurs near the tip of the wedge and decreases as moving downstream
[18,28,29,37]. Opposite to this occurs when A = 1 where the temperature difference be-

tween the free stream and the wall increases as moving downstream. This enhance the

buoyancy aud accelerates the flow.

5.3.2 Local Nusselt number

An analylical expression will now be oblained for the local heat transfer coellicient al

every ¢ position noting that

equating Equations (5.2) an

(o
—
(e |
"e
S’
o)1)
<)
P

b= —k,, (g)m 2590, ¢) (5.5)
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upon arranging, get the expression for dimensionless h

B = Nu = 15 = €5 (Pe)7(-00,¢) (5.6)

where R is the dimensionless local heat transfer coefficient. which is the Nusselt number

based on L. From Equations (5-3) and (5-6), note that at A = 0; ¢ = A".

)

Representative distributions of Nussell number for selective values of Gr/Re, ¢, Ra
and Pe are presented in Figures (5-19)-(5-22) for A = 0 and in Figures (5-27)-(5-30) for
" X = 1 where n = 1/3 for both cases. The Nusselt number for A = 0 decreases with
increasing ¢ due to the decrease in buoyancy eflects along the surface. For A =1 The
buoyancy effects increase with increasing ¢, hence the Nusselt number increases as £ in-

creases.

An expression will now be derived for the local Nusselt number in which = is the

characteristic length, with

E
Nu, = — 5.7

k. -7

Using Equation (5.5)
Nu
. T L 5.8
using Equation (5.6) and arranging obtain
Nu. = €75 (Pe) *[-8/(0,¢) (5.9)

Expressions can now be obtained to compare the three dimensionless values h™,¢"
and Nu,. By comparing Equations (5-3),(5-6) and ( 5-9), get

Nu,
£
q

h™ =

(5.10)

h :E; (5.11)
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equating Equation (5.10) with Equation (5.11)
&= O N, (5.2

It should be noted that at and near the tip the solutions are not applicable as a result

of the boundary layer approximations. A finite value of h* at { = 0 is expected.

5.3.3 Thermal boundary layer thickness

An expression for the thermal boundary layer thickness will now be oblajned. From
Equation (3.14) get
&
mr = (Pe)l*— 2 (5.13)

where g7 is the value of 7 at which @ equals 0.01, and & is the thermal boundary layer

thickness.

Now, obtain the following analytical expression from Equation (5.13)
& = L = () (Pe) 12y (5.11)

where &} is the dimensionless thermal boundary layer thickness . Heprescnlative distri-
bution Figures of the dimensionless thermal boundary layer thickness for selective values
of Gr/Re, ¢, Ra and Pe are shown in Figures (5-31)-(5-38). Higher heat Nuxes indicatle
lower thermal boundary layer thicknesses. With the local (T, — T ) values being con-

stant, higher lemperature-gradienis decrease the thermal boundary layer thickness.

5.3.4 Total heat transfer rate

Total heat transfer from one face of the fin and for unit width could be obiained by

integrating Equation (5.2} from 0 to L

Q= [k (B)" 00,00 519
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or using Equation (5.3 )

Q=

T = [ ey (0, 01 (5.16)

Where Q" is the dimensionless total heat trausfer rate. Values for Q" for selective values

of Gr/Re, ¢, Ra' and Pe are shown in Tables {5.1}-[5.4]. Simpson 1/3 rule is used to

perform the integrations .

5.3.5 Average Nusselt number

An expression for the average heat transfer coeflicient can be obtained by integraling
the local heat transfer coeflicient, Bquation (5.6), and dividing by the fin length, in

dimensional form

substituting Equation (5.5) for h

T - B n=1 ,
F=m fo(;) 2™ 0 e (5.18)

or, upon using Equation {5.6), in dimensionless form
1o
=R =X :f ¢55 (Pe)/?[-0'(0, €)]de (5.19)
0

Values for Nu for selective values of Gr/Re, ¢, Ra and Pe are shown in Tables [5.1]-[5.4].

Simpson 1/3 tule is used to perform the integrations.

In the case of similarity the value of Nu from Equation (5.19) becomes

Nu =

L (Pe)[-8(0) (5.20)

One surh case ts the case of vertical isothermal surface over which uniform free stream

velocity occurs, Eyuation (5.20) is then reduced to

Nu = 2(Pe)/?[-6'(0)] (5.21)
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=ble [5.1). Effect of Gr/Re on the average Nusselt number and total heat lransfer -

rate for Pe = 70 and ¢ = 45.

A=0and n=1/3 A=1and n=1/3

configuration (a) | configuration (b) | configuration (a) [ configuration ( b)
el | ¢ | m| ¢ | W | ¢ | M| @
! | 8.948 8.948 8.668 8.668 | 14.845 | 7.076 | 14.337 . 6.358
$ [ 1L793 | 11793 j1L.178 1 11.178 | 18.052 | 8846 | 17.023 8.111
5 | 14.026 | 14.026 | 13.250 [ 13.250 [ 20.673 | 10.277 | 19.367 9.786

Table [5.2]. Effect of ¢ on the average Nusselt nunber and total heat {ransfer

rale for Gr/Re = 3 and e = 100,

A=0and n =1/3

A=1nmdn=1/3

confignration (a) | confignraiion (b) | configuration (a) | configurakion (1)
¢ | Nu Q- Nu Q* Nu Q- Nu o
30 [14.808 | 14.808 | 14.410 | 14.410 | 22.352 | 11.050 | 21.696 | 10.796
45 | 14.024 | 14.024 | 13.412 | 13412 | 21481 | 10.535 | 20.452 | 10.129
6U | 12.890 | 12.800 | 12.240 | 12.240 | 20.223 9.800 18.755 9.204

Table [5.3]. Effect of Ra on the average Nussell number and total heat transfer

rate for Pe = 70 and ¢ = 45b.

A=Uand n=1/3

A=land n=1/3

configuration (a) | configuration (b) | confignration (a) | configuration ( h)
Ra | Nu Q" Nu 9 Nu Q" Nu Q-
50 | 8.458 8.458 8.258 8.258 14305 | 6.975 | 13.915 6.601
| 70 | 8.948 8.948 8.668 8.668 14843 | 7.075 14.337 6.858
100§ 9.636 9.636 9.2506 9.256 IRADL [ 7408 | 14 QR0 7.293
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Table [5.4]. Effect of Pe on the average Nusselt number and total heal transfer

rate far Na = 70 and frﬁ — 45,

A=0and n=1/3 A=1land n=1/3

configuration (a) | configuration (b) | configuration (a) [ configuration ( b)

re| Wu Q | Wu o Nu Q Vu Q"

50 | 8143 | 8413 |7.755 | 7.755 |13.105 | 6334 | 12548 | 6.063
70 8.948 8.948 8.6068 8.668 14.843 7.076 14.337 6.858
100 [ 10.054 | 10.054 | 9.861 | ©9.861 |17.020 | 8.063 | 16.644 | 7.895

It should be-a. noted that the values of Nu and Q" in this work and in similar
works [18,28,29,37], are underpredicted since non-similar solutions, in this work and in
the other works [18,28,29, 37}, were not been obtained for ¢ < 0.05 due lo numerical
system difficultics. The values of Nu and Q* in these ‘labies cover only the { rauge from
(.05 to 1. A difference of about 21% was found between Nu values in this work and the
works that use similarity solution for vertical [32] and horizontal surfaces [34]. Several
cases were compared and the difference was found lo range between 21.2 — 21.7%. Tables
[5.1]-[5.4] show that higher values of selected Gr/Re, Ra and Pe give higher Nu and ¢~
values. IHigher ¢ values in the selected range give lower I—VE and Q* values. All these re-
sults can now be easily explained. Configuration (a) gives higher Nu and @* values thau
configuration (b) for the selected parameters tested. Note that the dilference between
the two configurations in the Nu and Q* values increases with the increased Gr/Re, ¢
and Ra values. The opposite is observed for higher Pe values. This all related to the

buoyancy forces. ligher Pe values decrease the effect of buoyancy.
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5.4 Comparison with Previous Works

To the author’s knowledge, no literature daté. is available for mixed or forcéd convec-
tion from inclined non-similar boundary layers in porous medium. The available works
cover only similar boundary layers from vertical, inclined or horizontal surfaces [32,31].
llowever, it should be stated here that Cheng [1] mentioned an experimental work per-
formed by Combarnous and Bories [45] in which they investigated mixed convection in a

sloping porous layer which is not the case here.

To perform the comparison, solutions using the present work’s numerical method will

be obtained for the cases which admit similarity and was solved in previous works.

5.4.1 Vertical surfaces

Table [5.5] gives comparison between the present work and the works of Cheng -[32,38]
, Lai et al. [31] and Lui et al. [28] for aiding flows and Table [5.6] for opposing flows.
The surfaces are under isothermal condilions and the [ree stream velocily is uniform
(i.e. A =n =0). Cheng [32] obtained similarity solutions, Clieng [38] oblained integral
solutions, Lai et al. [31] obtained finite-difference solutions and Liu et al. [28] obtained

non-similar solutions. The value that will be tested is the value of ¢'(0).
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Table [5.5). Comparison of —6'(0) values for mixed convection about isothermal

vertical surfaces. A = n = 0. Aiding flows.

Gr/lic || Cheng [32] | Cheng [38] | Lai et al.[31] [ Lui et al[28] | present work |
0.6471 0.6582 0.6475 0.5059 0.6474
1 0.7205 - 0.7205 0.6633 0.7205
2 - - 0.8202 0.7801 0.8474
3 0.Y574 0.9666 - ) - 0.9573
10 1516 1.527 1.5163 » 1.5159
20 2.066 2.081 2.0661 - 2.0658
0 0.5641 0.5773 0.564 0.5191 0.5646

The value for —6'(0) was given in [39] to be 0.53 for forced convection. This value is

compared with the last row in lable {5.5].

Table [5.6]. Comparison of —6(0) values for mixed convection about isothermal

vertical surfaces.A = n = 0. Opposing flows

Gr/Re | Cheng [32] | Cheng [38] | Lai et al.[36] | present work
0.1 - - 0.5450 0.5460
0.2 || 0.5269 0.5416 0.5268 0.5274
0.4 (1.4865 0.5033 - 0.4873
0.6 0.4420 0.4618 - 0.4432
0.8 0.351 0.4163 - 0.3937

1 0.3320 0.3651 0.3320 0.3363

5.4.2 Inclined Surfaces

The only work that it is possible to compare with is the work of Cheng [32]. The wall
is of 45° inclination with A —n = 1/2. Nu velues 2rc comparad in Tablee {5.7] and [5.8]
for aiding flows and opposing flows,respectively. It should be noted that Cheng obtained

similarity solutions through the neglection of the normal buoyancy comporent. In the
present work similarity is not possible for this case. However, for the sake of comparison,

the normal buoyancy component will be deleted in the results of the present work.
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Table [5.7). Comparison of —8'(0) values for mixed convection aboul inclined

surfaces for A = n = 1/3. Aiding flows.

Aiding flows
& cos ¢ Cheng [32] | present work
0 (forced convection) {.8540 0.8541
0.5 0.9816 0.9816
1 1.093 1.094
1.456 1.457
10 2311 2.312
20 3.152 3.153

Table [5.8]. Comparison of —8'{0) values for mixed convection about inclined

sutlaces for A = n = 1/3. Opposing flows.

Opposing flows
Z cos ¢ || Cheng |32] | present work
0.2 0.7970 0.7970
0.4 0.7351 0.7352
0.6 0.667 1 0.6672
0.8 0.5903 0.5304
1 0.4999 0.5002

5.4.3 Horizontal surfaces

Three wotks are available. The works of Cheng [31,38] who oblained similarily so-
Nutions in [34] and integral solutions in [38], and ihe work of Minkowycz et al. [35] who
obtained non-similar solutions. Comparison with the last work will be for £ = L. Table

[5.9] shows the comparison.
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Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions

This work investigates the problem of mixed convection from inclined flat surfaces in

porous medium. The following items are concluded:

1. Momentum and thegmal boundary-layers are found to be non-similar, Similarity,
however, does exist for the special case of A = n = —1. The non-similarity is
caused by the depenglence of the wall temperature and the free stream velocity on

the streamwise location and from the retaining of the normal buoyancy component.

2. The present problem involves many parameters. The mixed conveclion parameter,
the Rayleigh number and the Peclet number describes the relative importance of
the inertia and buoyancy forces. The analysis involves the inclination and the
streamwise location parameters. Also, the analysis admits the general possible

variation of the wall temperature and the free stream velocity along the surface.

3. The possible position of the hmmﬂing snrfarce over or helow the porous medium
aflects the normal buoyancy component contribution to the problem. Shilting the

flow towards free convection (increasing Gr/Re or Ra or decreasing Pe) increases
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the leat transfer characteristics variations between the two configurations. These

variations were found, however, insignificant for the used parameler ranges.

. The inclination effect comes from the relative maguitudes of the two components of
buoyancy. Increasing the inclination increases the normal component of buoyancy

and the heat transier iale decreases,

5. The average Nusselt number and the total heat transler rale are enhanced by in--

creasing the mixed conveclion parameter, the Rayleigh number and the Peclet

number, and by decreasing the inclination.

. Maximum heat flux occurs near the tip and decreases as moving downstream in
the isothermal walls case, while for the linear variations of wall temperature, it

conlinues to increase as moving downstream.

. Constant heat flux is never attained for inclined walls. Constant heat flux does,
however, exist for vertical walls with wall temperalure and free stream variations

exponent of one third.
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6.2 Recommendations

In the present work, a goncral investigation of the problun of mixed convection from
inclined flat surfaces in porous medium was conducted. Further work in the problem ts
required and the following are suggestions for further investigations based on the present

work:

1. The extension of Darcy’s law to account for inertia and boundary effects for high
flow rate problems. In this case the momentum equation will contain more terms

and will be of third order.

2. The present analysis involves a large number of parameters and it is needed to
consider some of these parameters over wider ranges. The selected ranges in the

present work may be not enough to describe completely the behaviour of the flow.

Cad

ot free. The Darcian or non-Darcian models may he considercd,

4. In the three previcus ilems or in the present work, the effect of withdrawal and

injection of fluid may also be included.

5. The effects of curvature through the study of inclined cylinders is recommended to
be investigated. Free or mixed convections may be considered . Also, the analysis

may consider Darcy or non-Darcy models. The conjugate problem may also be

sludied.

6. Experimental works are needed to investigate inclined walls or cylinders in porous

medium.

The conjugate problem is also needed to be investigated. The flow may be mixed
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Appendix A

Non-Similar Transformation

Tl i i
e two governing equations are

Oy KpoyB or . 0T
= — — Al
2 = ” cos ¢ . Fsin ¢ e (A.1)
; ,
T _1[opor oy or &
dy? «a |0y 0z Oz Oy
introduce the following dimensionless variables
. o2\ 172 BA\Y?2 L,
n(z,y) = (E_‘E) L= (—) z 7y (A3)
a T a
x
= Ad
flz) = = (A1)
Y(e,m,€) = (0t ) f(n,€) = (@B)' 2™ f(7,€) (A.5)
' I'— Ty
f(n,¢) = T T (A.G)
with
AT =T, — To = 1Az
Equation (A.G) gives
T(z,m,€) = £Az*8(7,€) + T (A.7)

recalling from the chain rule that if three functions g, f, and k are defined such that

g(z,7,&) = f(z)-k(n,§)
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then

dg _ df
8z 3:: (?x

and
0 _ 0
gy Oy

then, the following chain relations are obtained

a d0np 00z O 0=
_ L4 — = A8
dz Onor * ¢ 0¢ * Oz Oz f-5)

0 00y 86y 00z

o _90n 00y, O0¢ A9
9y Ondy " BE0¢ T Bz oy ()

the last two terms on the RIS of Equation (A.9) are zeros and the relation reduces to
s pom e (A.10)

upon substituting Equations (A.3)-(A.7) into Equations (A.8) and (A.10) the transfor-

mation is performed as follows

671 n-1 B /2 n=3
G _ B ; A1l
w-()(G) = (A11
1/2
O _ (E) 25 (A.12)
Oy a
o 1
— = = A3
dr L ( )
then Equations (A.8) and (A.10) become
i) n -1 B\V? n-a d 14 J
— = — T oy— =+ — Al
Ox ( 2 )(a) v’ 6 +L6§+0m Pl
8 (BN’ «a 8
upon applying Equations (A.11)-(A.15) obtain the following
Xy (A.16)

8y
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0 1 fome, \? -

621JJ ; - 1/2
Sy = ( ) (A.18)

1/2

O _ ATy (""") ! (A.19)

Oy a r

ar Ly, AT 3 (n- o
ar _ alee A.20
— = MT: 9+L6£+( . )qAT:: 6 (A.20)
3’ a

A.1 The Momentum Equation

Substitute Equations (A.18)-(A.20) into Equation (A.1) and upon arranging get

J'= ﬂ:ﬁfBA "

ira (A.22)
[6"cos¢:|: (53)  sing (A0 + 22+ (252) o' )]
or
f" . (%(g_{l_LA-n) E,\-n ‘
—— (A.23)
[ cos ¢ (gzar) " €4 Dsin g (20 + €22 + (254) n9)]
finally
[ = Qg [9* cos g ()"
(A.21)

M eing (30 + 62 + %1,9')]
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A.2 The Energy Equation

Substitute Equations (A.10), (A.17), (A.19), (A.20) and (A.21) into Equation (A.2}

and upon arranging get

7t I n+1 '_ '.a__g'_— f_a—-f_ ri
Y +(—2—)f9 _f(f - 6&) (A.25)
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Appendix B |

Integral Equations

3

The governing Equations of the three levels derived in chapter 4 are all of the form

AH + PAA' — QA

where the variable A is subjected to conditions at 7 = 0 and oo.

Define the integral factor

exp ([ﬂ PAdq)
0

multiply (B.1) by (B.2)

_ n n , n R
evp (J{, P,\dr,') . (A')’ T AP (]£ PAufr,) RN = exp (j{, FAaq) - A

or

, n 4 n

[A expf P,\dn] = exp/ Ppdn
0 0
integrating
; n . n . 7 .
A =exp—/; Pa(n" g™ - /!; Qua(n Yexp /ﬂ Ppdn | dp” + ¢

where 7° is a dummy variable. Integrating again

399034~/ Vo + )

103

(B.1)

(B.2)

(B.5)

(13.6)
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A could be either f or 6. To find the constant ¢ in Equation (B.5) integrate Equation
(B.5) from =0 to co

f A(oo) ~ A0) = [~ exp (= [" P(")in) e
+ _/; " exp (— fo ’ P(n')dn') fo " Qn")exp ( j; " PA(n)dn) dn” (B.7)

If the conditions A{o0) and A(0) are known, use Equation (B.7) to fined ¢ . In the cases

where A(0) and A’(oo) are known, c is found as follows;

Substiiute the value of oo for n in Equation (B.5)

N(oo) =exp— [ Pa(n")dn" [ L aatryexe ( [N

or

e=N(eo)exp~ [ Pu(w )y — [~ Qar")exp ( / " Pﬁdn) dn’ (B.9)

The integration formulas used in the numerical computation is suggested in [43]
and it was derived by fitling a third- degree polynomial through four points. For the

interval (31 —7:) adjacent to the left -hand boundary of a zone, the integral is computed

from

i+1 Any
fi F(n)dn = ZL(OF; + 19F;y; — 5Fisz + Fiys) (B.10)

For the interval (x;1 — 1) adjacent to right-hand boundary of a zone

ki1 A
F(n)dn = _ﬁ(F"‘z — 581 + 19F, + 9F, ) (B.11)

For the inside interval, e.g. (741 — ;)

J+1 An
fj Fln)dy = 53 (~Fj-y + 13F; + 13F;41 = Fyya) (B.12)
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